If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(t)=19.6t-4.9t^2
We move all terms to the left:
(t)-(19.6t-4.9t^2)=0
We get rid of parentheses
4.9t^2-19.6t+t=0
We add all the numbers together, and all the variables
4.9t^2-18.6t=0
a = 4.9; b = -18.6; c = 0;
Δ = b2-4ac
Δ = -18.62-4·4.9·0
Δ = 345.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18.6)-\sqrt{345.96}}{2*4.9}=\frac{18.6-\sqrt{345.96}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18.6)+\sqrt{345.96}}{2*4.9}=\frac{18.6+\sqrt{345.96}}{9.8} $
| 3-5x+12=40 | | x-1/3=2x-3 | | 6n=21* | | 1425=275x+50 | | 5000=275x+50 | | y=275(2005)+50 | | 190000-190000x=150100-75050x | | 190000-95000x=150100 | | 190000-(190000*0.50*x)=150100 | | 190000-(190000*x)=150100 | | t/9=108 | | (-6x-6)(0.25)=6 | | (180-y)/2=53 | | 180-y/2=53 | | 80=b/40 | | y=-5(9)+50 | | x/17=68 | | i+-29=23 | | 1.5(x+7)=11.24 | | d/32=96 | | 32d=96 | | 25=k+14 | | (54000+x)-(54000+x)(0.20)=45900 | | x+0.20x=2700 | | Y+6=2y-4 | | 75=75x | | 5x+20=3x=4 | | 3x-12=x^2+5x-2 | | 15b+13b=28b | | Y=-3(0.5)x | | 16m/0.03=4 | | 16m+0.03=4 |